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MODEL OF NONLINEAR EVOLUTION OF LONG-WAVE

PERTURBATIONS ON AN IDEALLY CONDUCTING JET

WITH CURRENT IN A LONGITUDINAL MAGNETIC FIELD.

COLLISION OF MAGNETIZED JETS

UDC 532.522.2:538.4V. V. Nikulin

Within the framework of the magnetohydrodynamic approach, a system of equations is derived for
nonlinear evolution of long-wave axisymmetric perturbations on a conducting fluid jet with surface
electric current, located along the axis of a conducting solid cylinder in a longitudinal magnetic field.
The fluid is assumed to be inviscid, incompressible, and ideally conducting, like the cylinder walls.
It is shown that, if the longitudinal field is uniform and the axial flow is shear-free, this system
can be either hyperbolic or elliptic-hyperbolic, depending on problem parameters. The boundaries
of hyperbolicity and ellipticity regions in the space of solutions are determined. In the hyperbolicity
region, equations of characteristics and conditions on them are obtained. The problem of the decay of
velocity discontinuity on the jet is considered. Conditions are found for the existence of a continuous
self-similar solution in the hyperbolicity region, corresponding to collision of jets.

Key words: magnetic hydrodynamics, jet, long-wave approximation.

Introduction. Analytical studies of evolution of perturbations on fluid conductors with free boundaries have
been performed in the linear approximation and mainly by spectral methods [1–3]. The direct Lyapunov method
could be recently applied to these problems [4]. Still, there are insufficient analytical studies of the nonlinear stage
of perturbation evolution.

In studying nonlinear problems, because of their complexity, various approximate models that describe
essential features of the processes considered are frequently used. One of such simplifications is the long-wave or
shallow-water asymptotic approximation used in studying waves in the fluid [5, 6]. Within the framework of shallow-
water models, it became possible to study important features of nonlinear effects typical of the flows considered,
develop an exact theory, and also solve applied problems. In addition, this theory was mathematically justified by
studying the flow of a uniform fluid in a thin layer [7, 8].

In the present paper, the long-wave approximation is extended to the case of an MHD jet flow with a free
boundary. A model is proposed, which describes the nonlinear behavior of long-wave perturbations on a conducting
fluid jet with surface electric current in a longitudinal magnetic field. This model allows one to perform analytical
studies and has a certain physical meaning, which is confirmed by results obtained for a uniform longitudinal
magnetic field and shear-free axial flow.

1. Formulation of the Problem. We study a conducting fluid jet of unlimited length in a longitudinal
magnetic field with a constant electric current J passing on the jet surface. The jet is located along the axis of
an infinitely conducting cylinder of radius r0. We introduce a cylindrical coordinate system (r∗, ϕ, z∗); the z∗ axis
coincides with the jet centerline. The following notation is used: v1, v2, v3, H1, H2, H3, H∗1 , H∗2 , and H∗3 are
the fluid-velocity components and magnetic field inside and outside the jet corresponding to the coordinate system
(r∗, ϕ, z∗), P is the pressure, ρ is the density, and t∗ is the time. It is assumed that v2 ≡ 0 and H2 ≡ 0 during
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fluid motion in the conducting jet. In addition, it is assumed that this motion is axisymmetric and the fluid itself
is inviscid, incompressible, and ideally conducting. The action of surface-tension forces at the free boundary of the
jet is ignored.

Based on these assumption, the equations of one-fluid ideal magnetic hydrodynamics [9] take the form
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Here P∗ ≡ P + (H2
1 +H2

3 )/(8π) is the modified pressure and A is the azimuthal component of the vector potential
(magnetic permeability of the conducting jet is assumed to be equal to unity).

If the displacement current is neglected, the equations of the magnetic field outside the jet are

∂H∗1
∂z∗

− ∂H∗3
∂r∗

= 0, H∗2 =
2J
r∗
,

∂H∗3
∂z∗

+
1
r∗

∂(H∗1 r
∗)

∂r∗
= 0. (1.2)

The following boundary conditions are imposed at the axis of the conducting jet, its boundary [r∗ =
r1(z∗, t∗)], and cylinder walls:

v1 = 0, H1 = 0 (r∗ = 0),

P∗ =
(H∗1 )2 + (H∗2 )2 + (H∗3 )2

8π
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∂r1

∂z∗
= 0 (r∗ = r1(z∗, t∗)),

H∗1 = 0 (r∗ = r0).

In passing to the long-wave approximation, we introduce the dimensionless variables and quantities t, η, z,
q, w, p∗, h, H, a, h∗, æ, and H∗:

r∗2 = ηL2δ2, z∗ = zL, t∗ = tL/v0, 2v1r
∗ = qv0Lδ

2, v3 = wv0, P∗ = p∗ρv
2
0 ,

2H1r
∗ = hLδ2H0, H3 = HH0, 2Ar∗ = aδ2L2H0,

2H∗1 r
∗ = h∗Lδ2H0, H∗2 r

∗ = æLδH0, H∗3 = H∗H0.

Here L is the characteristic scale along the z∗ axis, H0 is the characteristic value of the magnetic field equal to
H∗2 for r∗ = r10 (H0 = 2J/r10), r10 is the characteristic radius of the jet, v0 = H0/(4πρ)1/2 is the characteristic
velocity, and δ = r10/L. It is assumed that δ � 1. In dimensionless variables, Eqs. (1.1) and (1.2) are written as

δ2(qt + qqη − q2/(2η) + wqz) = −4ηp∗η + δ2(hhη − h2/(2η) +Hhz),

wt + qwη + wwz = −p∗z + hHη +HHz, qη + wz = 0, (1.4)

at + qaη + waz = 0, h = −az, H = aη;

δ2h∗z − 4ηH∗η = 0, æ = 1, H∗z + h∗η = 0. (1.5)
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Hereinafter, the subscripts indicate the corresponding partial derivative. The boundary conditions (1.3) take the
form

q = 0, h = 0 (η = 0), q = η1t + wη1z (η = η1),
(1.6)

p∗ = δ2(h∗)2/(8η1) + 1/(2η1) + (H∗)2/2 (η = η1), h−Hη1z = 0 (η = η1);

h∗ −H∗η1z = 0 (η = η1), h∗ = 0 (η = η0), (1.7)

where η1(t, z) and η0 correspond to r1(t, z) and r0, respectively.
In passing to the long-wave approximation in (1.4)–(1.7), the terms proportional to δ2 are omitted. In this

case, system (1.5) with conditions (1.7) has the solution h∗ = H∗z (η0 − η), H∗ = H∗(t, z) = Φ/(η0 − η1), where
Φ = const is the dimensionless axial flux of the magnetic field between the jet and the cylinder walls. Then, the
condition for p∗ from (1.6) (with allowance for δ2 → 0) acquires the form

p∗ = 1/(2η1) + Φ2/[2(η0 − η1)2]. (1.8)

For system (1.4), the long-wave approximation is not the final one, since it can be further simplified by
passing (see [4, 10]) to mixed Euler–Lagrange variables t′, z′, and ν determined by the relations

t = t′, z = z′, η = R(t′, z′, ν), ν ∈ [0, 1].

The function R is assumed to satisfy the equation and the boundary conditions

q = Rt′ + wRz′ , R(t′, z′, 0) = 0, R(t′, z′, 1) = η1(t′, z′). (1.9)

Thus, the variable ν can be interpreted as the number of the corresponding streamline. In addition, it follows from
(1.9) that the boundary conditions (1.6) (for the function q) are satisfied automatically. Note, in the case of this
substitution of variables, the unknown free boundary η = η1 is transformed to the known fixed boundary ν = 1.

In new mixed Euler–Lagrange variables (terms with δ2 are neglected), Eqs. (1.4) are written as

p∗ν = 0,

Rν(wt + wwz) = −Rνp∗z + hHν +RνHHz −HRzHν ,

qν +Rνwz −Rzwν = 0, (1.10)

at + waz = 0,

h = −az + (Rz/Rν)aν , H = aν/Rν .

Hereinafter, the primes at the variables t′ and z′ are omitted.
The boundary conditions (1.6) for the magnetic field in terms of the function a have the form az = 0

for ν = 0, 1. Equations (1.10) are supplemented by the following initial conditions: w(0, z, ν) = w0(z, ν) and
R(0, z, ν) = R0(z, ν); based on the requirements of mutual uniqueness of the transition to mixed Euler–Lagrange
variables, R0(z, ν) is assumed to be a monotonically increasing function of the argument ν. As the initial condition
for the function a, we use a(0, z, ν) = a0(ν). This condition is satisfied if the streamlines are chosen to coincide, at
t = 0, with the force lines of the magnetic field (because a = const along the force line). Then, as it follows from the
fourth equation of system (1.10), the function a(t, z, ν) = a0(ν) is its solution satisfying the corresponding boundary
conditions. Thus, the choice of the function a(t, z, ν) = a0(ν) limits the scope of problems considered only by the
requirement of sufficient smoothness of the initial force lines. It is assumed below that a(t, z, ν) = a0(ν).

Using the first equation of system (1.10) and the boundary condition (1.8), we determine p∗. Replacing p∗z
by the expression obtained for p∗ and q by representation (1.9) and assuming that a = a0(ν), from (1.10), we obtain
the equations

wt + wwz =
( 1

2R2
1

− Φ2

(η0 −R1)3

)
R1z −

(a0ν)2

(Rν)3
Rνz,

(1.11)

(Rν)t + (wRν)z = 0, h = Rza0ν/Rν , H = a0ν/Rν .

Here R1 is the value of the function R for ν = 1; according to the third relation of (1.9), we have R1(t, z) ≡ η1(t, z).
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2. Shear-Free Axial Flow and Uniform Longitudinal Magnetic Field. We consider the class of
particular solutions of system (1.11) of the form w = w(t, z), R = νR1(t, z), and a0(ν) = νb0 (b0 is a constant).
This class of solutions has the following physical interpretation. For t < 0, the jet of cylindrical form is located in
a uniform magnetic field, the current J passes on the jet surface, and the jet flow is shear-free. At the time t = 0,
perturbations are introduced into the jet; the magnetic field is assumed to be frozen thereby. Let us study the
evolution of these perturbations.

For the class of solutions mentioned, system (1.11) takes the form

wt + wwz +
( b20
R3

1

+
b21(η0 − 1)2

(η0 −R1)3
− 1

2R2
1

)
R1z = 0,

(2.1)

R1t +R1wz + wR1z = 0, h = νb0R1z/R1, H = b0/R1.

Here b1 = Φ/(η0 − 1). From here and from the definition of b0, it follows that b0 and b1 are the ratios of the
undisturbed longitudinal fields inside and outside the jet to the characteristic field (i.e., to the azimuthal field at
the jet boundary). Thus, this class of solutions is described by a system of two quasilinear equations in partial
derivatives. Let us study the type of this system. For this purpose, we find the characteristics on a certain solution
(w,R1).

Note, the system obtained is similar to gas-dynamic equations that describe one-dimensional unsteady isen-
tropic motions of a gas with plane waves [11]. The quantity R1 has the meaning of density, and the expression

c(R1) = (b20/R
2
1 + b21(η0 − 1)2R1/(η0 −R1)3 − 1/(2R1))1/2

has the meaning of the velocity of sound.
The equation of characteristics of system (2.1) has the form dz/dt = w ± c. It follows from here that the

system is hyperbolic for c2 > 0 and elliptic for c2 < 0.
We determine the regions of hyperbolicity and ellipticity of the system, since it is of principal importance

for understanding the character of the solutions. A clear geometric idea of these regions can be obtained if we
introduce the quantities α and β by the relations

α = R1/η0, β = (η0 −R1)/η0, 0 6 α < 1, 0 < β 6 1.

Then, the equality c2 = 0 is satisfied at the points of intersection of two curves in the plane (α, β)

β = 1− α, β =
(2b21(η0 − 1)2)1/3α

η
1/3
0 (α− 2b20/η0)1/3

, (2.2)

located in the domain of definition of α and β. Hence, for 2b20/η0 > 1, there are no intersection points, and the
system is always hyperbolic. For 2b20/η0 = α0 < 1, two cases are possible (Fig. 1). Curve 1 in Fig. 1 corresponds
to the first equation in (2.2), and curves 2, 3, and 4 correspond to the second equation in (2.2). The system is
either always hyperbolic (curve 3) or elliptic–hyperbolic: elliptic for α1 < α < α2 (curve 4) and hyperbolic outside
this interval. Introducing the notation R1∗ = α1η0 and R2∗ = α2η0, we obtain that the system is hyperbolic for
0 < R1 < R1∗ and R1 > R2∗ and elliptic for R1∗ < R1 < R2∗. Note, the condition of hyperbolicity on the steady
solution corresponding to the shear-free flow in a cylindrical jet of constant radius R1 = 1 is b20+b21/(η0−1)−1/2 > 0,
i.e., coincides with the necessary and sufficient condition of linear stability of such a flow, obtained by the spectral
method [1].

An essential factor for analytical studies is the fact that, in the region of hyperbolicity, the Riemann invari-
ants, i.e., the functions s(w,R1) and l(w,R1), which remain constant on the characteristics, are found in an explicit
form:

s = w − σ(R1), l = w + σ(R1), σ(R1) =

R∗∫
R1

c(ξ)
ξ

dξ. (2.3)

Here R∗ is a certain constant from the interval (0, η0) if the system is hyperbolic and R∗ = R1∗ if the system is
of the mixed type [in the second case, only the interval (0, R1∗) is considered in the region of hyperbolicity]. The
invariants s and l are conserved along the characteristics described by the equations dz/dt = w+c and dz/dt = w−c,
respectively [i.e., st + (w+ c)sz = 0 and lt + (w− c)lz = 0]. By analogy with gas dynamics, following [6], the plane
of variables (w,R1) is called the hodograph plane. In studying hyperbolic systems, the graphical representation
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of characteristics on the hodograph plane is used. Let us consider the case where the region of ellipticity exists.
The behavior of characteristics on the hodograph plane in the band 0 < R1 < R1∗ is shown in Fig. 2. Curves 1–3
correspond to the line s = const, and curves 1′–3′ correspond to the line l = const for different values of constants.
In passing through the line R1 = R1∗ (transitional line), the type of the system changes. Note, in contrast to [6],
where the characteristics on transitional lines have both second-order tangency points and cuspidal points, there
are only cuspidal points on the transitional line R1 = R1∗. The behavior of characteristics near the transitional line
is important for studying the question whether the solution can leave the region of hyperbolicity in the course of
evolution [12].

We consider the case η0 � 1, where the radius of the external cylinder is much greater than the jet radius.
Passing to the limit η0 →∞, we obtain

c = [b20/R
2
1 − 1/(2R1)]1/2. (2.4)

It follows from here that the system in this case is a system of the mixed type: it is hyperbolic in the band
0 < R1 < 2b20 and elliptic in the region R1 > 2b20.

3. Collision of Magnetized Jets. We use the theory described in Sec. 2 to solving a particular problem.
First, we perform a mathematical study and then discuss the possibility of physical application. To simplify the
mathematical manipulations, we consider the case η0 � 1, i.e., we take the dependence c(R1) in the form (2.4).
Such simplification retains the main features of the equations examined.

At the time t = 0, the following perturbation is introduced into an initially motionless cylindrical jet of
unit radius: the fluid located in the region z < 0 acquires a velocity w1, and the fluid located in the region z > 0
acquires a velocity w2 (w1 > w2). We assume that the initial conditions belong to the region of hyperbolicity, i.e.,
the inequality 2b20 > 1 is satisfied. We determine for which values of w1 and w2 continuous motion is possible at
subsequent times (t > 0) and find it.

We seek the solution in the form of a combination of simple centered waves and motions with a constant
velocity. By virtue of the above-mentioned analogy between Eqs. (2.1) and gas-dynamic equations, the properties
of simple waves are also similar. We assume that l- and s-waves are simple waves in which the invariants l and s are
constant (then, the characteristics along which the invariants s and l are constant are straight lines). We determine
how the tangency of the slope of characteristics in the plane (z, t) in l- and s-waves changes with varied radius of the
jet R1. We consider the l-wave. We assume that k1 = w+c and l = l0 = w+σ(R1). Hence, k1 = l0 +c(R1)−σ(R1).
Differentiating k1 with respect to R1 and taking into account expressions (2.3) and (2.4) for σ and c, we obtain

dk1

dR1
=

dc

dR1
+

c

R1
= − 21/2

4(2b20 −R1)1/2
< 0. (3.1)
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For the s-wave, we assume that k2 = w − c and s = s0 = w − σ(R1). Therefore, we obtain
dk2

dR1
= − dk1

dR1
> 0. (3.2)

The flow pattern in the plane (z, t) with allowance for (3.1) and (3.2) is presented in Fig. 3. The sectors AOB
and COD contain the l- and s-waves with l0 = w2 + σ(1) and s0 = w1 − σ(1), respectively. Along the ray OA
(z = [w2 + c(1)]t), the l-wave is adjacent to the flow region with constant w and R1: w = w2 and R1 = 1. Along
the rays OB and OC, the l- and s-waves are also adjacent to the flow region with constant w and R1: w = w3 and
R1 = R13. The equation of the ray OB is z = [w3 + c(R13)]t, and the equation of the ray OC is z = [w3 − c(R13)]t.
Along the ray OD (z = [w1 − c(1)]t), the s-wave is adjacent to the flow region with constant w and R1: w = w1

and R1 = 1. Because the region of hyperbolicity is located to the left of the straight line R1 = R1∗ (in the case
considered, R1∗ = 2b20), the motion corresponding to Fig. 3 is possible not for all values of w1 and w2. Since the l-
and s-waves are adjacent to the same flow region with w = w3 and R1 = R13, the graphs of the l0- and s0-waves on
the hodograph plane (see Fig. 2) should intersect at the point (w3, R13). Obviously, this is possible only for l0 > s0.
Substituting the expressions for l0 and s0, we find that this kind of motion can be realized only in the case

w1 − w2 6 2σ(1) = 2

2b20∫
1

c(ξ)
ξ

dξ,

i.e., if the difference in velocities is not very large. For w1 − w2 = 2σ(1), the constant solution (w3, R13) falls onto
the interface between the hyperbolicity and ellipticity regions. We determine the values of w3 and R13. For the
l0- and s0-waves, we obtain l0 = w3 + σ(R13) and s0 = w3− σ(R13). Substituting the expressions for l0 and s0 into
these equalities, we obtain

w3 = (w1 + w2)/2, σ(R13) = σ(1)− (w1 − w2)/2.

The latter expression serves to find R13. It follows from inequalities (3.1) and (3.2) that R13 > 1. Thus, bulges with
relative velocities c(1) and −c(1) propagate into the regions with constant velocities and radii (w1, 1) and (w2, 1),
respectively.

The results obtained are generalized to the case where the fluid has different densities for z < 0 and z > 0: ρ1

and ρ2. If we use ρ2 as the normalizing density, then the factor ρ1/ρ2 appears at convective terms in the equations
for the fluid of density ρ1. Then, the “velocity of sound” c and the function σ for this fluid for identical values of
R1 are (ρ1/ρ2)1/2 times lower than the corresponding values for the fluid of density ρ2. As a result, w3 and R13 are
found from the relations

w3 =
w1(ρ1/ρ2)1/2 + w2

1 + (ρ1/ρ2)1/2
, σ(R13) = σ(1)− (w1 − w2)(ρ1/ρ2)1/2

1 + (ρ1/ρ2)1/2
.

It follows from the latter equality than the solution is possible if

w1 − w2 6 σ(1)[1 + (ρ1/ρ2)1/2]/(ρ1/ρ2)1/2.

In addition, between the rays OB and OC, there appears the ray z = w3t corresponding to the contact
discontinuity between the fluids with densities ρ1 and ρ2.
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This solution can be used to analyze the collision of magnetized jets. It describes the propagation of
perturbations over the jets and yields the critical value for the velocity difference before which there exists a
continuous self-similar solution. If the difference exceeds this critical value, new effects can appear, for instance,
the jets can be destroyed.

Conclusions. Thus, a model is constructed, which describes the nonlinear evolution of long-wave axisym-
metric perturbations on a conducting fluid jet with surface electric current, located along the axis of a conducting
solid cylinder in a longitudinal magnetic field. The possibility of using the model for analytical studies is demon-
strated. The special feature of the model system of equations is that this system can be either hyperbolic or
elliptic-hyperbolic if the longitudinal field is uniform and the axial flow is shear-free. In the region of hyperbolicity,
the Riemann invariants are calculated in an explicit form, which is important for analytical studies. The possibility
of solution transition from the hyperbolic region to the elliptic region can mean, for instance, that the stability of a
certain steady solution in the linear approximation (which corresponds to hyperbolicity of the system on the given
solution) does not guarantee that instability does not appear at the nonlinear stage of perturbation development
(when the system passes to the region of ellipticity). Possibly, this is one of the reasons that conductors with electric
current passing over them in the longitudinal magnetic field are destroyed even if the magnitude of the longitudinal
field is much greater than the threshold of linear stability [13]. The problem of decay of the velocity discontinuity
on the jet is solved. We believe that this solution can be used to analyze the collision of magnetized jets.
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